Code: 19EE2701A

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2022

RENEWABLE ENERGY RESOURCES

(Common for CE, ME, ECE, CSE, IT)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1. a)	Define solar constant.	L1	CO1
1. b)	List out the applications of solar energy.	L1	CO2
1. c)	List out three differences between horizontal and	L1	CO2
	vertical axis wind mills.		
1. d)	Describe the principle of OTEC.	L1	CO1
1. e)	List the advantages of mini/micro hydro	L1	CO4
	resources.		

PART - B

			BL	СО	Max. Marks		
	UNIT-I						
2	a)	Classify solar collectors and the important	L2	CO3	6 M		
		features of a solar collector.					
	b)	Explain the working of sunshine recorder	L2	CO2	6 M		
		with a neat sketch.					

		OR			
3	a)	Interpret the reasons for variation in solar	L2	CO4	6 M
		radiation reaching the earth than received			
		at the onside of the atmosphere.			
	b)	Calculate solar radiation on tilted surface.	L3	CO2	6 M
		UNIT-II			
4	a)	Classify different solar energy storage	L2	CO2	6 M
		systems and explain them in brief.			
	b)	Describe the layout and working of a	L2	CO2	6 M
		continuous solar cooling system.			
		OR			
5	a)	Explain the principle of solar photovoltaic	L2	CO3	6 M
		power generation.			
	b)	Explain the working of solar pond electric	L2	CO2	6 M
		power plant with a neat sketch.			
		UNIT-III			
6	a)	Discuss in detail the operation and control	L2	CO2	6 M
		of a wind turbine and the variations of			
		wind velocity, directions are taken care.			
	b)	A horizontal axis wind turbine is installed	L4	CO4	6 M
		at a location having free wind velocity of			
		15 m/s. and the 80m diameter rotor has			
		three blades attached to the hub. Find the			
		total power density of wind turbine for			
		optimal energy extraction (ρ =1.226).			
		OR			

7	a)	Compare and contrast the biomass and	L2	CO1	4 M
		biogas.			
	b)	Describe biomass conversion	L2	CO1	8 M
		technologies & draw a schematic diagram			
		to explain various conversion			
		technologies and products.			
		UNIT-IV			
8	a)	Describe different analytical methods to	L2	CO1	6 M
		estimate geothermal potential.			
	b)	Discuss vapour dominated geothermal	L2	CO2	6 M
		plant with a diagram.			
		OR			
9	a)	Explain the closed cycle OTEC plant and	L2	CO1	6 M
		list out the major problems associated			
		with OTEC.			
	b)	Explain the source of tidal energy and the	L2	CO4	6 M
		minimum tidal range required for the			
		working of a tidal plant.			
	Г	UNIT-V	T	T T	
10	a)	Explain the principle of closed cycle	L2	CO3	6 M
		system with respect to MHD.			
	b)	Explain the principle of MHD power	L2	CO2	6 M
		generation and discuss about the main			
		parts of MHD generator.			
OR					

11	a)	Discuss the operating conditions of fuel	L2	CO3	6 M
		cell.			
	b)	Describe the principle of working of a	L2	CO2	6 M
		fuel cell with reference to $H_2 - O_2$ cell.			